
SMSQzine
Issue #3 June 2016

smsqzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

SMSQzine is published as a
service to the Sinclair QL
community. Writers are invited
to submit articles for publication.
Readers are invited to submit
article ideas.

Created using Open
Source Tools:

 OpenOffice
 Scribus
 Gimp
 SMSQmulator

Copyright 2015
Timothy Swenson

Creative Commons License
 Attribution
 NonCommercial
 ShareAlike

You are free:

 To copy, distribute,
display, and perform
the work.

 To make derivitive
works.

 To redistribute the
work.

table of contents

Editorial 1

The QL in the United States 1

Astronomical Calculations with Abacus and Archive 3

Random Numbers Across Emulators 4

Sigot Algorithm for PI 5

Quality of QL Random Number Generator 6

Prospero Fortran 7

Editorial

It's been a while since the last issue was out, but I've
had a number of distractions from the QL. The
articles focus on those things that interest me, leaning
toward programming and computation. I do have
problems coming up with ideas for articles, so if you
have ideas, please pass them along.

The cover is from the first Sinclair QL advertisement
package that I received back when the QL was
released to the US. I remember going over it in
detail, marveling at the graphics, the four application
programs that came with the QL, wondering what the
QL Net network really was, and so on. I was
impressed at how black the black was in the
monitors. I remember seeing C64's with their
composite monitors and the black would get brighter
as you turn up the brightness. That never happened
with the QL Vision monitor. I remember realizing
that the foldout picture of the QL was life size, so I
would set it down and see how the spacing on the
keys were by practicing typing on the picture. I kept
that advertisement package all these years and even
picked up a few more copies. It's has been 30 years
since I bought my first QL, in April 1986, back when
I was on college. Now, my middle daughter is now
graduating from the same college.

The QL in the United States

When the Sinclair QL was launched in the UK, the
American computer press picked up the news.
Infoworld, a leading computer news magazine,
announced the launch in its Feb. 6, 1984, issue. In
the next issue of Infoworld it said that Sir Clive
announced that the QL will be sold in the United
Status starting in the fall of 1984. The expected price
will be $499. The plan was to sell the QL via mail
order.

In February of 1984, Timex Computer Corporation
threw in the towel and stopped making and selling
the Timex/Sinclair 1000, 1500, and 2068. The home
computer wars were heating up and Timex was one
of the casualties. Texas Instruments announced in
October 1983 that they were discontinuing the TI

99/4A. Also in October, Mattel announced its
discontinuance of the Aquarius home computer, less
than 6 months after it was released.

Throughout all of 1984, Sinclair was having
problems with the QL in the UK market. The effort
to get into the US market was delayed. Sinclair
employee David Chatten found the Korean
manufacturer, Samsung, to make the US and German
QL's. Since the RF standards in both countries were
tighter than the UK, the Samsung QL's were

electronically quieter and better built. John Munford
managed the relationship with Samsung, making
many trips to Korea.

David Ahl, founder and editor of Creative
Computing, one of the early computer magazines,
wsa able to get a hold of a QL. The December 1984
issue of Creative Computing had an extensive review
of the QL, written by David himself. David found a
few problems with the keyboard and the microdrives.
He was impressed with the manual. One of the more
interesting parts of the review is his comment on
Easel: "On the other hand, the QL Easel business
graphics package is outstanding, and it alone may
justify the purchase of the system, especially for a
business which already has an Epson FX80 (which
prints the graphics output exactly)."

In February, 1985, after being the Managing Director
of Sinclair Research, Nigel Searle was shipped back
to the United States to handle the launch of the QL.
He had previously handled the launch of the ZX81 in
the United States. The launch of the QL was set for
June 1985.

First QL Only Newsletter in the US

Page 1

As the date of the launch for the QL was coming up,
the financial fortune of Sinclair Research was on the
decline. Both Sinclair and Amstrad had price cuts
early in 1985. It was estimated that Sinclair Research
was losing a million pounds a month at the start of
1985 and by the middle of 1985, it had 30 millions
pounds of unsold inventory. With bugs in the QL
getting sorted out, Sinclair decided to relaunch the
QL in March 1985 with a 750,000 pound advertising
campaign. In May 1985, Sinclair admitted that it was
in dire financial straights, despite the sales numbers
increasing after the second launch.

The QL was launched in May 1985 with the first
sales going to American Express customers. The
launch was very subdued and I could not find any
specific mention of the launch. Infoworld, which had
been reporting on the QL, did not report the launch.

Timelinez, the newsletter for the San Fransicco
Timex Sinclair User Groups, did mention that they
demonstrated the QL at the West Coast Computer
Faire, in March 1985. The user groups had a booth at
the Faire and handed out 1,750 QL sales brochures.
The QL, a UK model, was on loan from Sinclair
USA, arranged by Mary Reinman.

Orders for the general public were taken, starting in
June 1985. It was reported that those that ordered
directly from Sinclair received their QL's before
those ordered by American Express customers.

Norm Lehfeldt of San Francisco reported that it took
5 months from order for his QL to arrive, in
September 1985.

In August 1985, the cost of the QL was reduced from
$500 to $300. As 1986 came around, the financial
situation for Sinclair was looking worse. In April,
1986, Sinclair was sold to Amstrad. Before this
happened, George and Carol Whitham of A+
Computer Response, worked out a deal with Sinclair

USA to purchase all of the Sinclair stock in the
United States, dealing with Terry Shurwood, director
of Sinclair USA. George and Carol initially approach
Sinclair USA to be a reseller.

The QL really did not make it into any major
computer or electronics retailers. A number of small
computer stores, those that already sold
Timex/Sinclair computers, were the only retailers to
carry the QL. A number of mail order companies,
like Bob Dyl's QL Connection, Curry Computer of
Arizona, Mechanical Affinity run by Frank Davis and
Paul Holmgren, and Quantum Computing. The QL
Connection advertised in Infoworld and Quantum
Computing advertised in Dr. Dobb's Journal, both
leading computer magazines. Andy Hredesky said
that he sold the QL going doortodoor in Sunnyvale,
California.

It was the numerous Timex/Sinclair user groups that
provided a market for the QL. Most QL owners had
previously owned a Timex/Sinclair computer. As the
first QL's started showing up at the user group
meetings, more were interested in getting their own.

Initially there was no magazine for the QL in the
United States. Users used the T/S user group

Page 2

newsletters and T/S magazines like Time Designs and
Update!. The first QLonly newsletter was probably
Quantum Levels, published by Tom Bent. Soon after
was QLui, which was a very short lived newsletter
that I believe only had two
issues. The largest QLonly
newsletter was International
QL Report (IQLR) with its
first issue in May/June 1991.

As a ZX81 and T/S 2068
user, and an undergraduate
in Computer Science, I was
watching the press on the
QL. I did not have any
plans to buy right away.
The $500 cost was more
than the cost of a college
Quarter, both tuition and
books. I needed more time
to save my money. In April,
1986, I visited Sunet Electronics in San Francisco.
The QL was down to $300, the QL Vision monitor
was $300, and the QL printer was $300. If you
bought all three in a bundle, the cost was $800. I
walked out the door with the whole bundle. Soon, I
was typing my school papers on the QL and using the
nearletterquality of the printer to print them out.

Astronomical Calculations with Abacus
and Archive

The books that I found on Astronomical Calculations
mostly talked about calculators, with some using
programming languages to implement the
calculations or algorithms. The older books used
BASIC or Pascal, some newer books used C or C++.

One book that was interesting was "Practical
Astronomy with our Calculator or Spreadsheet" by
DuffetSmith & Zwart. This book was an updated
version that talked just about using a calculator and
added the idea of using a spreadsheet for the
calculations. I really had not though about using a
spreadsheet and I used to do a lot of spreadsheets
with Lotus 123, back in the day. I decided to see if
Abacus would be up to the task for some of the

calculations.

A number of the simpler calculations were fairly easy
to implement in Abacus. The more advanced

calculations in the book
relied on the ability of
MS Excel to create new
functions, which is
something that Abacus is
not able to do. I did
have to be careful about
the recalculation method
in Abacus and make sure
that I did not have cells
that needed to be
calculated first, being
calculated second.

The algorithms that I
was able to implement
in Abacus are; Easter,

Day of the Week, Moon phase, Gregorian to Julian
and Julian to Gregorian. They are part of the separate
download as the files:

easter_aba
dayofweek_aba
Greg2jul_aba
jul2greg_aba
moonphase_aba

After implementing these calculations with Abacus, I
was wondering what other tools or languages that I
could use to. One of the other parts of Xchange is
Archive. Known as a database package, Archive has
a programming language that does have the essential
functions needed to implement these calculations.
The resultant code is very similar to Superbasic, so it
was fairly easy to port over. The algorithms that were
implemented are; Easter, Moon phase (which
includes Gregorian to Julian) and Day of the Week.
They are part of the separate download as the files:

Easter_prg
moonphse_prg
dayofweek_prg

Calculating Easter with Abacus

Page 3

Example Code: Day of the Week

proc greg2jd

if month = 1 or month = 2

let year = year 1

let month = month + 12

endif

let a = int(year/100)

let b = 2 a + int(a/4)

let jd = int(365.25*(year+4716))

let jd = jd +

int(30.6001*(month+1))

let jd = jd + day + b 1524.5

endproc

proc dayofweek

input "Year : ";year

input "Month : ";month

input "Day : ";day

print

print "Day is ";

greg2jd

let jd = jd + 1.5

let x = jd (7 * int(jd/7))

if x = 0

print "Sunday"

endif

if x = 1

print "Monday"

endif

if x = 2

print "Tuesday"

endif

if x = 3

print "Wednesday"

endif

if x = 4

print "Thursday"

endif

if x = 5

print "Friday"

endif

if x = 6

print "Saturday"

endif

endproc

Random Numbers across Emulators

Years ago I wrote a program called Complex Ascii
Rotation (CAR). Ascii rotation is taking a character
and adding a set value to it. ROT13 was a common
rotation used in USENET forums to "hide" some
material that some might find offensive. ROT13 was
taking a character and adding 13 to its value. In the
case of an A, ROT13 turns it into N, B becomes an O
and so on.

Technically this is a form of encryption, but it is too
weak and obvious to be secure. For each character
the rotation is the same, so with just a few example
letters, it is fairly easy to discover how much each
letter is being shifted.

If the value shifted was different for each letter, that
would complicate the encryption. The problem is
determining the number to shift each letter. One
needs a list of numbers for this. This is where the
random number generator comes in. Most home
computers had a pseudorandom number generator
that used an algorithm that would create a list of the
same numbers when starting with the same starting
point. This is where the RANDOMISE command
comes in. For the ZX81, it took the FRAMES value
as the seed for the random number generator. On the
QL, it worked similarly.

This all assumes that you want random numbers. But
if you seed the random number generator with the
same number, then you will get the same list of
numbers every time. Complex Ascii Rotation used
this flaw in the system to find a different value to
shift each letter. A password from the user was
hashed into a single number. This was then used as
the seed for the random number generator. The
program would then read in a character, get a
"random" number, add that value to the character and
output that number to a file. In this way, the entire
original message file was processed. The ending file
would look like gibberish.

Since the list of random numbers depended on the
home computer used, it was fairly secure. You could

Page 4

not "encrypt" on the QL and then "decrypt" on a
Spectrum or C64. The receiver had to have the same
computer as the sender.

As the QL expanded into different emulators and OS
versions (Minerva, SMSQ/E), I wondered if there
was any incompatabilites between them that could
cause Complex Ascii Rotation to fail. I decided to
run a simple test on a couple of emulators and
different ROM's.

Here is 10 random numbers generated using the same
starting point, on different emulators and ROMs:

QDOS Qemulator with JS ROM
5, 3, 1, 10, 5, 0, 1, 8, 8, 9

Minerva Qemulator with Minerva 1.97 ROM
5, 3, 1, 10, 5, 0, 1, 8, 8, 9

SMSQ/E Qemulator with Gold Card SMSQ/E
5, 5, 9, 2, 7, 0, 1, 2, 8, 5

SMSQ/E QPC 1
5, 5, 9, 2, 7, 0, 1, 2, 8, 5

SMSQ/E QPC II
5, 5, 9, 2, 7, 0, 1, 2, 8, 5

SMSQmulator
5, 5, 9, 2, 7, 0, 1, 2, 8, 5

The conclusion is that both QDOS and Minerva use
the same random number generator. SMSQ/E (on
any platform) uses the same random number
generator, but different than QDOS and Minerva.

The code used to run the test is:

10 randomise 100

20 for x = 1 to 10

30 print rnd(10)

40 next x

Spigot Algorithm for PI

While trolling the Internet for something else, I came
across an algorithm for generating N digits of PI. The
page (http://rosettacode.org/wiki/Pi) is part of the
website Rosetta Code, that shows different coding
projects in a number of languages.

The pi algorithm is called a Spigot algorithm because
"it pumps out digits one at a time and does not use
the digits after they are computed." The algorithm
was published by Stanley Rabinowitz and Stan

Wagon in 1995. Their algorithm was based on a
spigot algorithm for the value e (lower case E)
created by A. H. Sale in 1968.

I'm not a mathematician, but what interested me was
that the algorithm does not require any floating point
math, but only integer math. It also does not require
the handling of large numbers. The computation
involved is fairly simple. The only down side of the
algorithm is that, the more digits you want to
compute, the more memory is needed. The higher the
number of digits, the longer the processing is.
Computing the first 10 digits when computing 10
digits is quick. Getting the first 10 digits when
computing for 10,000 digits is a lot slower. The
output does not generate the decimal place for PI,
meaning that the output starts with 0314159..., which
is really 3.14159....

From the Rosetta Code website, I found the link to
the original article from 1995. It had an
implementation of the algorithm in Pascal. The code
worked fine with Computer One Pascal. There was a
C version that compiled fine with C68.

The website has a version of algorithm for BASIC
that was fairly easy to convert the SuperBasic. The
BASIC version was for BASIC256, a version of
BASIC that is very similar to SuperBasic, when
compared to QBASIC or other popular forms of

Page 5

BASIC. This version was fairly easy to port to
SuperBasic and get running on the QL.

With the SuperBasic version I ran it to calculate PI to
500 digits (see diagram).

If one needed to calculate and then store the first X
digits of PI, the code would be fairly simple to add
saving the digits to a file. Just remember that the
more digits calculated, the longer it will take to run
through the process.

Structured SuperBASIC version of Algorithm

Pi Spigot;

n = 100

length = (10*n) / 4

dim a(length)

for j = 1 to length

a(j) = 2

next j

nines = 0

predigit = 0

for j = 1 to n

q = 0

for i = length to 1 step 1

x = 10*a(i) + q*i

a(i) = x mod (2*i1)

q = int(x / (2*i1))

next i

a(1) = q mod 10

q = int(q / 10)

if q = 9 then

nines = nines + 1

else if q = 10 then

print predigit+1;

if nines > 0 then

for k = 1 to nines

print 0

next k

end if

predigit = 0

nines = 0

else

print predigit;

predigit = q

if nines <> 0 then

for k = 1 to nines

print 9;

next k

nines = 0

end if

end if

end if

next j

print predigit;

Quality of QL Random Number Generator

After looking at the QL random number generator
across emulators, I started thinking about the quality
of the random number generator. Is the random
number generator on the QL with SMSQ/E good or
not so good?

I wrote a short program to generate a number of
random numbers from 1 to 10, then for each random
number, I incremented the value in an array to keep
track of how many times that number appeared. I ran
this program for a hundred, a thousand, and ten
thousand iterations. The results were entered in to an
Abacus spreadsheet and a little computation was
made on the numbers. Mostly the maximum,
minimum and difference between the two was
calculated (see Figure 1). This give an idea of how
random the random number generator is.

To look for a different or better random number
generator I found the book "Numerical Recipes in C,
2nd Edition". Chapter 7 is dedicated to random
numbers and it presented a couple of random number
algorithms, some fast and some good. The good
random number generators are listed as ran0, ran1,
and ran2. These algorithms are designed to be
portable across systems and languages. Ran0 is the
Minimal Standard generator proposed by Park and
Miller. It is a decent generator, but to does have
some flaws. The authors of the book created ran1 to
fix the deficiencies of ran0. They say that "ran1
passes those statistical tests that ran0 are known to
fail." The other random number generator, ran2, has
a longer period than ran1 and should only be used

Page 6

when one needs a long sequence of random numbers.

I ported to the ran1 algorithm to SuperBasic and run
it for a hundred, a thousand, and ten thousand
iterations. I then plugged the data into a similar
spreadsheet as the QL random number generator (see
figure 2).

Looking at the two spreadsheets, there is not a whole
lot of difference between the random number
generators. The ran1 algorithm seems to be a little
less well distributed at one hundred iterations, but at
ten thousand iterations, it comes pretty close to the
QL random number generator. If ran1 is considered
by the authors of "Numerical Recipes in C, 2nd
Edition" and it is comparable to the QL SMSQ/E
random number generator, then the QL random
number generator must be considered good, too.

Prospero Fotran

The Prospero Fotran compiler and manual was made
available a while back. I'm not a big fan of Fortran,
but it was a class that I took in college. As a compiler
for the QL, I wanted to give it a try.

The Fortran compiler is similar to the Prospero Pascal
compiler in how it comes and how it works. The
compiler is partially stored on a ROM cartridge. A
software of the cartridge comes with the compiler, so
you will need an emulator that allows ROM
cartridges, which means QEmulator. The compiler
also comes with an extension toolkit, but this is only
needed for running the Fortran programs on
computers without the ROM. Don't have the ROM
loaded and the load the toolkit. The compiler will
work once and then give an error the next time.

The compiler documentation is pretty
good and about the same as the
Prospero Pascal compiler. The
manual comes in three parts, an
overview, a review of the language,
and using the compiler.

With a little hope from Urs Konig, I
figured out to use the compiler. It is
a two step process run the compiler
and then run the linker. The end
result with be a _BIN file with is the
QL executable.

The compiler comes with three
example Fortran programs; prime,
squares, and trapdemo. Prime is a
program that determines if a number
is prime, squares is a demonstration
of the QDOS graphics routines, and
trapdemo is a demonstration of using
QDOS traps from Fortran.

The compiler supports Fortran 77,
which at the time the compiler came
out, was the most recent version of
Fortran. To test if the compiler
would handle standard Fortran 77, I

Page 7

found a Fortran 77 book and picked a piece of sample
code and ran it through the compiler. The sample
code did leave out the declaration of the variables,
but other than that, I made no other changes to the
code. The code compiled with no errors.

When looking for code to try I found a problem with
Fortran 77 and what is called Fortran 77. The Fortran
compiler that comes with Linux is f77, or a Fortran
77 compiler. But it was updated after the next
version of Fortran (Fortran 90) came out, so it picked
up some modifications that are not port of the Fortran
77 standard. One sign that a Fortran 77 program is
updated is it using lower case. Fortran 77 stayed with
the older convention of user all uppercase. Another
indicator is using "end do" instead of "CONTINUE"
when ending a DO loop. When buying books on
Fortran 77, I had to make sure was printed before
1990.

Like the Prospero Pascal, Prospero Fortran only
allows windows to be opened for output and no input.
This is probably the biggest issue when it comes to
creating QL programs in Fortran.

When running the compiler programs, there is a
standard three questions that come up first:

Standard input file?
Standard output file?
Option string?

These questions can be annoying. There is no way to
turn these question off in the compiler or linker, but
there is an accessory program (noqns_exe) that can
be run on the compiled code to turn this off the
questions.

Granted Fortran is not one of the popular languages,
put there is a large amount of available source code,
esp. in mathematical and scientific programming. I
can see using the compiler to port over older Fortran
77 programs and try them out on the QL.

PROGRAM FORCE

REAL D,F

PRINT *,'INPUT DISTANCE TO

PLANET'

READ *,D

IF (D .LE. 100.0) GO TO 10

F = 5000.0/D**2

PRINT *,'FREE FLIGHT'

GO TO 20

10 F = 5000.0/D**28.0

PRINT *,'THRUSTERS ON'

20 PRINT *,'FORCE = ',F

END

Page 8

